Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Dibenzyl 2,2'-(ethane-1,2-diylidene)dihydrazinecarbodithioate bis(dimethylformamide) solvate

Li Xu,† Jian-Hao Zhou, Xue-Tai Chen* and Xiao-Zeng You

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: xtchen@netra.nju.edu.cn

Received 3 August 2001 Accepted 27 June 2002 Online 31 July 2002

The title compound, $C_{18}H_{18}N_4S_4 \cdot 2C_3H_7NO$, crystallizes with the dibenzyl dihydrazinecarbodithioate molecule residing on a crystallographic inversion centre. The molecule adopts a *trans* conformation with respect to the central C–C single bond. The dihedral angle between the phenyl group and the thiothiosemicarbazone unit is 74.1 (1)°.

Comment

Over the past three decades, metal complexes of S,N-chelating agents have been extensively studied because of their pronounced antibacterial, antiviral and anticancer biological activities (Ali & Livingstone, 1974). The majority of studies have focused on either N,S-bidentate or N,N,S-tridentate donor sequences in these ligands. The observation that the S,N,N,S-tetradentate ligand 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone) and its copper(II) chelate possess antineoplastic activities (Winkelmann et al., 1974; Petering, 1974; Chan-Stier et al., 1976; Minkel et al., 1976, 1978; Minkel & Petering, 1978) provided an impetus for the study of tetradentate S,N-chelating ligands and transition-metal complexes of thiosemicarbazone. A number of nickel(II), copper(II) and zinc(II) chelates have been synthesized and characterized. Recently, the title compound, dibenzyl 2,2'-(ethane-1,2-diylidene)dihydrazinecarbodithioate bis(dimethylformamide) solvate, (I), and the corresponding nickel(II), copper(II), cadmium(II) and zinc(II) chelates, were reported to exhibit biological activity (Ali et al., 1992). We obtained a single crystal of (I) and report herein its molecular and crystal structure.

The structure of (I), together with the atom-labelling scheme, is shown in Fig. 1. The two thiosemicarbazone moieties adopt a *trans* configuration with respect to the C9– $C9^i$ bond, which minimizes the steric crowding in the molecule [symmetry code: (i) -1 - x, 1 - y, 1 - z]. No intramolecular

hydrogen bonding is observed. The molecule sits on a crystallographic centre of symmetry, which resides at the midpoint of the C9–C9ⁱ bond. There are three nearly planar groupings of atoms in the molecule, namely the two symmetry-related phenyl planes, with a mean deviation of 0.0025 Å, and the central plane consisting of atoms C7, S1, C8, S2, N1, N2, C9 and their symmetry equivalents, with a mean deviation of 0.0110 Å. The dihedral angle between the phenyl ring and the central plane is 74.1 (1)°.

Selected bond lengths and angles are listed in Table 1. The N2–C9 [1.275 (3) Å] and S2–C8 [1.647 (3) Å] bonds both exhibit double-bond character. The N1–C8 [1.337 (3) Å] and S1–C8 [1.746 (2) Å] bond distances are shorter than accepted covalent single-bond values (N–C 1.47 Å and C–S 1.81 Å; Xu, 1993; Lydon *et al.*, 1982), indicating their partial double-bond character, due to delocalization of the electrons in the S1–C8(=S2)–N1 π -system.

The bond angles around C8 illustrate the steric effect of the bulky benzyl substituent, with the result that the S1-C8-S2 angle is 125.44 (15)°, compared with a value of 112.77 (18)° for N1-C8-S1 and 121.78 (18)° for N1-C8-S2. There are weak intermolecular C9-H9A···O1 and N1-H1A···O1 hydrogen bonds between the dibenzyl dihydrazinecarbodi-thioate molecule and the dimethylformamide solvent molecules (details are given in Table 2). There are no other significant interactions, such as π - π stacking, found in the crystal structure.

Figure 1

A view of the structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) -1 - x, 1 - y, 1 - z.]

[†] Alternative address: Information College of Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China.

Experimental

The title compound was prepared by refluxing S-benzyldithiocarbazate and a 30% aqueous solution of glyoxal (molar ratio 2:1) in absolute ethanol for ca 5 min (Ali *et al.*, 1992). Diffraction-quality crystals of (I) were obtained by recrystallization from dimethylformamide.

Z = 1

 $D_x = 1.273 \text{ Mg m}^{-3}$

Cell parameters from 1445

3156 independent reflections

1900 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\mu=0.35~\mathrm{mm}^{-1}$

T = 293 (2) K

 $R_{\rm int}=0.013$

 $\theta_{\rm max} = 27.9^{\circ}$

 $h = -7 \rightarrow 8$

 $k = -13 \rightarrow 11$

 $l = -15 \rightarrow 12$

Prism, pale yellow $0.25 \times 0.22 \times 0.17 \text{ mm}$

 $\theta=2.8{-}25.9^\circ$

Crystal data

$C_{18}H_{18}N_4S_4 \cdot 2C_3H_7NO$
$M_r = 564.84$
Triclinic, P1
$a = 6.1040 (10) \text{ Å}_{10}$
b = 10.3202 (18) Å
c = 11.960 (2) Å
$\alpha = 94.863 \ (3)^{\circ}$
$\beta = 94.078 \ (3)^{\circ}$
$\gamma = 99.867 \ (3)^{\circ}$
$V = 736.8 (2) \text{ Å}^3$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans Absorption correction: empirical (*SADABS*; Sheldrick, 1996) $T_{min} = 0.913, T_{max} = 0.942$ 4486 measured reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.048$	independent and constrained
$wR(F^2) = 0.130$	refinement
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.063P)^2]$
3156 reflections	where $P = (F_o^2 + 2F_c^2)/3$
168 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.28 \mathrm{e} \mathrm{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

S1-C7	1.818 (3)	N2-C9	1.275 (3)
S1-C8	1.746 (2)	N3-C10	1.442 (4)
S2-C8	1.647 (3)	N3-C11	1.439 (4)
N1-C8	1.337 (3)	N3-C12	1.317 (4)
N1-N2	1.367 (3)	O1-C12	1.211 (3)
C7-S1-C8	101.86 (12)	S1-C7-C6	106.70 (19)
N2-N1-C8	120.34 (19)	S1-C8-S2	125.44 (15)
N1-N2-C9	115.60 (19)	N1-C8-S1	112.77 (18)
C10-N3-C11	119.1 (3)	N1-C8-S2	121.78 (18)
C10-N3-C12	120.8 (3)	N2-C9-C9 ⁱ	118.5 (3)
C11-N3-C12	119.8 (3)	N3-C12-O1	127.3 (3)

Symmetry code: (i) -1 - x, 1 - y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C9-H9A\cdots O1$	0.93	2.36	3.147 (3)	143
N1-H1 $A\cdots O1$	0.86	2.01	2.833 (2)	160

Atom H12 (bonded to C12) was located from a difference map. The remaining H atoms were placed geometrically and refined using a riding model, with C—H distances in the range 0.93–0.97 Å and N—H distances of 0.86 Å.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by a Natural Science Grant from Jiangsu Province (BK99032).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BJ1039). Services for accessing these data are described at the back of the journal.

References

- Ali, M. A., Haroon, C. M., Nazimuddin, M., Majumder, S. M. M., Tarafder, M. T. H. & Khair, M. A. (1992). *Transition Met. Chem.* 17, 133–136.
- Ali, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132, and references therein.
- Chan-Stier, C. H., Minkel, D. T. & Petering, D. H. (1976). *Bioinorg. Chem.* 6, 203–217.
- Lydon, J. D., Elder, R. C. & Deutsch, E. (1982). Inorg. Chem. 21, 3186-3197.
- Minkel, D. T., Chan-Stier, C. H. & Petering, D. H. (1976). Mol. Pharmacol. 12, 1036–1044.
- Minkel, D. T. & Petering, D. H. (1978). Cancer Res. 38, 117-123.
- Minkel, D. T., Saryan, A. L. & Petering, D. H. (1978). Cancer Res. 38, 124-129.
- Petering, D. H. (1974). Biochem. Pharmacol. 23, 567-576.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Winkelmann, D. A., Bermke, Y. & Petering, D. H. (1974). Bioinorg. Chem. 3, 261–277.
- Xu, S. (1993). Organic Chemistry, 2nd ed., p. 6. Beijing: High Educational Press.