Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Dibenzyl 2,2'-(ethane-1,2-diylidene)dihydrazinecarbodithioate bis(dimethylformamide) solvate

Li Xu,† Jian-Hao Zhou, Xue-Tai Chen* and Xiao-Zeng You

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Correspondence e-mail: xtchen@netra.nju.edu.cn

Received 3 August 2001
Accepted 27 June 2002
Online 31 July 2002
The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{4} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, crystallizes with the dibenzyl dihydrazinecarbodithioate molecule residing on a crystallographic inversion centre. The molecule adopts a trans conformation with respect to the central $\mathrm{C}-\mathrm{C}$ single bond. The dihedral angle between the phenyl group and the thiothiosemicarbazone unit is 74.1 (1) ${ }^{\circ}$.

Comment

Over the past three decades, metal complexes of S, N-chelating agents have been extensively studied because of their pronounced antibacterial, antiviral and anticancer biological activities (Ali \& Livingstone, 1974). The majority of studies have focused on either N, S-bidentate or N, N, S-tridentate donor sequences in these ligands. The observation that the S, N, N, S-tetradentate ligand 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone) and its copper(II) chelate possess antineoplastic activities (Winkelmann et al., 1974; Petering, 1974; Chan-Stier et al., 1976; Minkel et al., 1976, 1978; Minkel \& Petering, 1978) provided an impetus for the study of tetradentate S, N-chelating ligands and transition-metal complexes of thiosemicarbazone. A number of nickel(II), copper(II) and zinc(II) chelates have been synthesized and characterized. Recently, the title compound, dibenzyl 2,2'-(ethane-1,2-diylidene)dihydrazinecarbodithioate bis(dimethylformamide) solvate, (I), and the corresponding nickel(II), copper(II), cadmium(II) and zinc(II) chelates, were reported to exhibit biological activity (Ali et al., 1992). We obtained a single crystal of (I) and report herein its molecular and crystal structure.

The structure of (I), together with the atom-labelling scheme, is shown in Fig. 1. The two thiosemicarbazone moieties adopt a trans configuration with respect to the $\mathrm{C} 9-$ $\mathrm{C} 9^{i}$ bond, which minimizes the steric crowding in the molecule [symmetry code: (i) $-1-x, 1-y, 1-z$]. No intramolecular

[^0]hydrogen bonding is observed. The molecule sits on a crystallographic centre of symmetry, which resides at the midpoint of the $\mathrm{C} 9-\mathrm{C} 9^{\mathrm{i}}$ bond. There are three nearly planar groupings of atoms in the molecule, namely the two symmetry-related phenyl planes, with a mean deviation of $0.0025 \AA$, and the central plane consisting of atoms C7, S1, C8, S2, N1, N2, C9 and their symmetry equivalents, with a mean deviation of $0.0110 \AA$. The dihedral angle between the phenyl ring and the central plane is $74.1(1)^{\circ}$.

(I)

Selected bond lengths and angles are listed in Table 1. The $\mathrm{N} 2-\mathrm{C} 9[1.275$ (3) A] and S2-C8 [1.647 (3) Å] bonds both exhibit double-bond character. The N1-C8 [1.337 (3) Å] and S1-C8 [1.746 (2) Å] bond distances are shorter than accepted covalent single-bond values ($\mathrm{N}-\mathrm{C} 1.47 \AA$ and $\mathrm{C}-\mathrm{S} 1.81 \AA$; Xu, 1993; Lydon et al., 1982), indicating their partial doublebond character, due to delocalization of the electrons in the $\mathrm{S} 1-\mathrm{C} 8(=\mathrm{S} 2)-\mathrm{N} 1 \pi$-system.

The bond angles around C8 illustrate the steric effect of the bulky benzyl substituent, with the result that the $\mathrm{S} 1-\mathrm{C} 8-\mathrm{S} 2$ angle is $125.44(15)^{\circ}$, compared with a value of 112.77 (18) ${ }^{\circ}$ for $\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$ and $121.78(18)^{\circ}$ for $\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 2$. There are weak intermolecular $\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 1$ and $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$ hydrogen bonds between the dibenzyl dihydrazinecarbodithioate molecule and the dimethylformamide solvent molecules (details are given in Table 2). There are no other significant interactions, such as $\pi-\pi$ stacking, found in the crystal structure.

Figure 1
A view of the structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) $-1-x, 1-y, 1-z$.]

Experimental

The title compound was prepared by refluxing S-benzyldithiocarbazate and a 30% aqueous solution of glyoxal (molar ratio 2:1) in absolute ethanol for ca 5 min (Ali et al., 1992). Diffraction-quality crystals of (I) were obtained by recrystallization from dimethylformamide.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{4} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.273 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=564.84$
Triclinic, $P \overline{1}$
$a=6.1040$ (10) \AA
$b=10.3202(18) \AA$
$c=11.960$ (2) Å
$\alpha=94.863(3)^{\circ}$
$\beta=94.078(3)^{\circ}$
$\gamma=99.867(3)^{\circ}$
$V=736.8(2) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 1445 reflections
$\theta=2.8-25.9^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, pale yellow
$0.25 \times 0.22 \times 0.17 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer

ω scans

Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.913, T_{\text {max }}=0.942$
4486 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.130$
$S=1.00$
3156 reflections
168 parameters

3156 independent reflections
1900 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=27.9^{\circ}$
$h=-7 \rightarrow 8$
$k=-13 \rightarrow 11$
$l=-15 \rightarrow 12$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.063 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{\text {max }} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

S1-C7	$1.818(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.275(3)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.746(2)$	$\mathrm{N} 3-\mathrm{C} 10$	$1.442(4)$
$\mathrm{S} 2-\mathrm{C} 8$	$1.647(3)$	$\mathrm{N} 3-\mathrm{C} 11$	$1.439(4)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.337(3)$	$\mathrm{N} 3-\mathrm{C} 12$	$1.317(4)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.367(3)$	$\mathrm{O} 1-\mathrm{C} 12$	$1.211(3)$
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 8$	$101.86(12)$	$\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 6$	$106.70(19)$
N2-N1-C8	$120.34(19)$	$\mathrm{S} 1-\mathrm{C} 8-\mathrm{S} 2$	$125.44(15)$
N1-N2-C9	$115.60(19)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$112.77(18)$
$\mathrm{C} 10-\mathrm{N} 3-\mathrm{C} 11$	$119.1(3)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 2$	$121.78(18)$
$\mathrm{C} 10-\mathrm{N} 3-\mathrm{C} 12$	$120.8(3)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 9^{\mathrm{i}}$	$118.5(3)$
$\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 12$	$119.8(3)$	$\mathrm{N} 3-\mathrm{C} 12-\mathrm{O} 1$	$127.3(3)$

Symmetry code: (i) $-1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9A $\cdots \mathrm{O} 1$	0.93	2.36	$3.147(3)$	143
N1-H1 $\cdots \mathrm{O} 1$	0.86	2.01	$2.833(2)$	160

Atom H12 (bonded to C12) was located from a difference map. The remaining H atoms were placed geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and $\mathrm{N}-$ H distances of $0.86 \AA$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by a Natural Science Grant from Jiangsu Province (BK99032).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BJ1039). Services for accessing these data are described at the back of the journal.

References

Ali, M. A., Haroon, C. M., Nazimuddin, M., Majumder, S. M. M., Tarafder, M. T. H. \& Khair, M. A. (1992). Transition Met. Chem. 17, 133-136.

Ali, M. A. \& Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132, and references therein.
Chan-Stier, C. H., Minkel, D. T. \& Petering, D. H. (1976). Bioinorg. Chem. 6, 203-217.
Lydon, J. D., Elder, R. C. \& Deutsch, E. (1982). Inorg. Chem. 21, 3186-3197.
Minkel, D. T., Chan-Stier, C. H. \& Petering, D. H. (1976). Mol. Pharmacol. 12, 1036-1044.
Minkel, D. T. \& Petering, D. H. (1978). Cancer Res. 38, 117-123.
Minkel, D. T., Saryan, A. L. \& Petering, D. H. (1978). Cancer Res. 38, 124-129.
Petering, D. H. (1974). Biochem. Pharmacol. 23, 567-576.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Winkelmann, D. A., Bermke, Y. \& Petering, D. H. (1974). Bioinorg. Chem. 3, 261-277.
Xu, S. (1993). Organic Chemistry, 2nd ed., p. 6. Beijing: High Educational Press.

[^0]: \dagger Alternative address: Information College of Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China.

